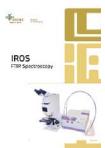


RAMOS Confocal Raman Microscopes

Content

Confocal Raman Microscopes

RAM	OS N500	5
	Simultaneous multifunctional analysis	6
	High spectral resolution	7
	High spatial resolution and sensitivity	8
	True confocal design with variable cross-slit	9
	Fast Raman imaging	.10
	Powerful analytical software	.11
	Specification	.12
RAM	105 E/M series	.13
	Design	.13
	3D laser confocal and Raman imaging	.14
	High sensivity and signal-to-noise ratio	.15
	Specification	.17
	Poverful NanoSPO software package	.19
	Raman spectral database	.22


Ostec Instruments produces and offers hi-tech innovative scientific and analytical equipment.

Our mission is to be a company that finds, selects, protects and develops cutting-edge ideas to create new products and technologies and deliver technological progress. That is why the symbol of our company is a growing sprout.

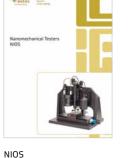
We provide complete solutions for our clients: the best equipment to meet customer's requirements, deep knowledge of customer's applications, qualified and reliable maintenance support.

OUR other products:

IROS FTIR Spectroscopy

IROS P series Industrial FTIR Spectrometers

OCOS Optical components


1105 500N Laser elemental analyzer

AVOS Vibration control solutions

SEOS 02 Optical emission spectrometer

Nanomechanical testers

Accessories for Scanning Probe Microscopes

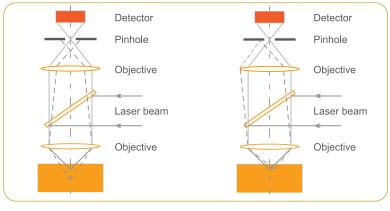
FiPOS ATR fiber probes

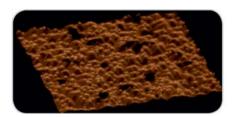
OMOS M series Analytical metallographic systems

Ostec Instruments | + 7 (800) 700-65-55 | info@ostec-instruments.com | www.ostec-instruments.com

RAMOS N500 3D Scanning Laser Raman Microscope

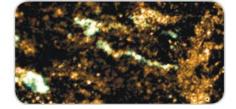
Simultaneous multifunctional analysis


- Raman Measurements
- Luminescence Measurements
- Laser Reflection & Transmission Measurements
- Spectral and Polarization measurements

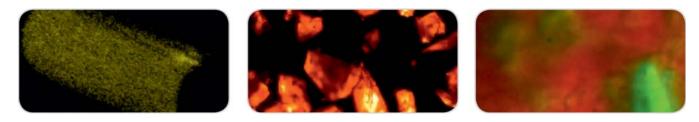

3D high-contrast images in reflected light 3D confocal Raman measurements

Confocal detection principle

Confocal Laser Scanning Raman Microscope has become a widely recognized research instrument in recent years. Confocal microscopy offers several advantages over conventional widefield optical microscopy, including the ability to control depth of field, elimination or reduction of background information away from the focal plane and the capability to collect serial optical sections from thick samples. The image of the extended sample is generated by scanning the focused laser beam across a defined area.



The pinhole aperture rejects the residual scattered rays originated from any out-of-focus points on a sample.


We have created the instrument that is right for you

High spectral resolution

Spatial resolution: less than 200 nm (in plane) and less than 500 nm (in Z) Spectral resolution: ~ 0.25 cm⁻¹ Wavelength accuracy in spectrum with CCD detector: 0.005 nm (1800 l / mm)

Applications

Semiconductors

High spatial resolution Raman confocal microscopy can provide information on dopant concentrations and stress distribution in semiconductor materials.

Biology

Raman spectroscopy allows easy visualization of cellular components with minimum perturbation.

Pharmaceutics

Confocal Raman spectroscopy allows chemical compounds and molecular conformers in various drugs to be identified and their distribution mapped with high spatial resolution.

Geology

Confocal Raman microscopy is an excellent technique for characterization of minerals, detection of components distribution and their phase

transitions.

Cosmetology

Confocal Raman microspectroscopy is a promising technique which enables measuring the skin care products as well as their penetration

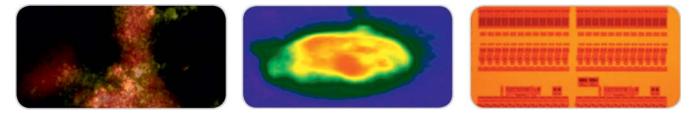
capability.

Forensics

Application areas include identification of unknown substances, different types of fibers, glasses, paints, explosive materials, inks, narcotic and toxic substances, proof of authenticity of documents.

Material science

Confocal Raman offers excellent spatial resolution for characterization of materials (superconductor, polymers, coatings, composites,


carbon nanotubes, graphene, etc.)

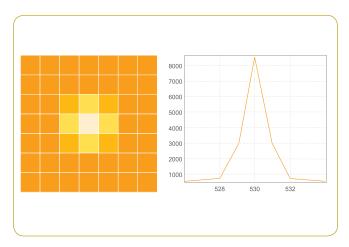
Heritage and Art, Gemology

Raman spectroscopy allows identification of pigments and binders used in paintings. The spectroscopic analysis of archaeological samples (ceramics, glasses, etc.) provides information on their origin and history. Raman technique allows rapid identification of colored stones, natural and synthetic diamonds.

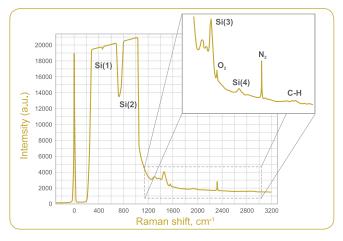
and many more

Raman megapixel image for 3 sec Fully automated system with up to 5 integrated lasers

High spatial resolution and sensitivity


Major features

The highest spectral and imaging resolution with specially designed spectrometer


Specially designed imaging spectrometer incorporates many features that makes it ideal for confocal Raman measurements. The image of pinhole is projected to a multichannel detector without any aberrations.

The smaller amount of illuminated pixels on the CCD matrix leads to the smaller dark counts and the higher spectral resolution.

Spectral resolution of RAMOS N500 with an Echelle grating is 0.25 cm⁻¹.

Spectral image of the pinhole on the CCD camera (aberration free). CCD pixel size is 12 $\mu m.$

Silicon 4th order sensitivity.

Fully automated system

High optical throughput for enhanced sensitivity

The 4th order Silicon band at 1940 cm⁻¹ can be observed in less than one minute using a low intensity laser.

Raman spectrometer RAMOS N500 is highly modular and fully automated. Up to 5 lasers can be used is a single system with no manual filters/grating changes.

The lasers can be switched from one to another by just

Motorized control for laser power, beam diameter, polarization orientation, pinhole size and grating is

2D / 3D images can be acquired rapidly.

Fully automated

one click.

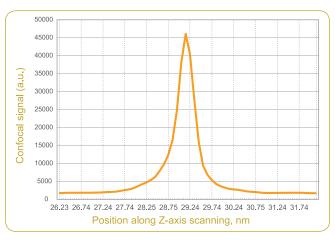
provided.

True confocal design with variable cross-slit

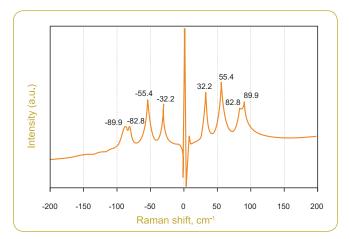
High spatial resolution


Confocal Raman microscope RAMOS N500 can achieve:

lateral resolution close to theoretical limitation


Laser wavelength, nm	Objective	XY - plane resolution, nm
488	100x, NA = 0.9	250
532	100x, NA = 0.9	275
633	100x, NA = 0.9	320
785	100x, NA = 0.9	390

axial resolution (in depth direction, 100x, NA = 0.9)


Laser wavelength, nm	Z (axial) resolution, nm
488	520
532	560
633	660
785	800

RAMOS N500 can take high definition Raman images (λ = 514 nm, 100x, NA = 1.4).

Axial resolution of 450 nm (λ = 488 nm, 100x, NA = 0.95).

Low frequency Raman shift measurement range can be expanded using Bragg notch filters.

Wide Raman shift measurement range

range, cm⁻¹

125 - 8000

115 - 8000

80 - 6000

50 - 8000

50 - 6000

40 - 2800

Raman shift measurement range with Edge filters

Laser

wavelength, nm

325

355

473

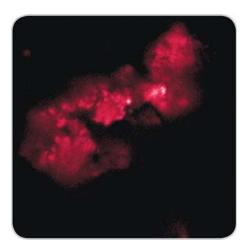
532

633

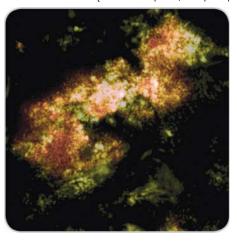
785

Low frequency Raman bands of Acetaminophen (Stokes and Anti-Stokes bands are detectable as close as 7 cm-1 to the laser line)

Megapixel Raman image for 3 sec


Ultrafast Raman imaging

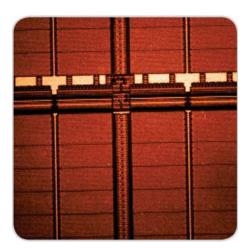
3D scanning laser confocal Raman microscope RAMOS N500 provides the acquisition of two images within a single scan: a Rayleigh image (using laser light reflected from a sample) and a spectral image by Raman scattering.


Ultrafast imaging option allows to get confocal image in 3 sec (3 μ s/pixel).

RAMOS N500 uses fast beam scanning by galvanic mirrors.

Layout of galvanic mirror scanner module allows mapping with no intensity losses from image center to its edges.

Rayleigh image of Granite Gneiss India. Anatase distribution (1000×1000 pixels, time per 1 pixel is 3 μ s).


Raman image of Granite Gneiss India. Anatase distribution (1000 x 1000 pixels, time per 1 pixel is 43 µs).

Fast imaging mode with EMCCD / CCD

RAMOS N500 system can be used with a number of different detectors.

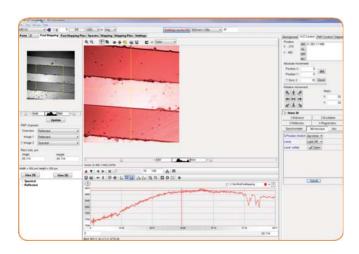
Up to three detectors can be used simultaneously. Proprietary algorithm for taking high speed of Raman imaging with fast spectral CCD (EMCCD) is offered.

The use of an EMCCD (Electron Multiplying CCD) camera can greatly increase Raman detection efficiency and speed.

Raman image of Silicon / SiO₂ sample. Si distribution (500 x 500 pixels, time per pixel is 5 ms).

Fully automated system

Software package with powerful analytical functionality


Ultrawide field Raman imaging

Uniform, large size scanning area of a galvanic scanner module:

- 150 µm x 150 µm (objective lens 100x)
- 320 µm x 320 µm (objective lens 40x)
- 680 µm x 680 µm (objective lens 20x)

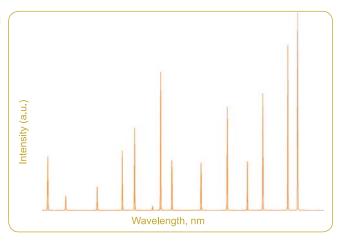
Automatic XY stage can be used for ultrawide field imaging.

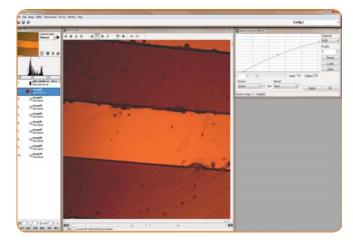
The panoramic image (hyper image) by automatic stitching of a series of images obtained with the use of galvanic scanner.

High precision spectrometer calibration

RAMOS N500 is equipped with a neon lamp (option) for spectral calibration.

Calibration is possible at any wavelength by one click in the software.


More capabilities


- microscope can be equipped with a heating or cooling stage, vacuum or high pressure cell
- fiber optics probe for remote measurements

Data Acquisition and Data Analysis software

RAMOS N500 software "Nano SPO" with powerful analytical functionality is designed for hardware operating, data acquisition and data analysis.

2D and 3D image creation Autofocus control during mapping Automatic background subtraction, cosmic ray removing, peak shift imaging, etc. Support for external spectral databases Data export to popular file formats Intuitive user-friendly interface Compatible with Windows XP, Vista, 7

Specification

*MICROSCOP	E					
Туре:	inverted Nikon Ti-S and uprig	ght Nikon Ni-U				
*Objective lenses:	CFI Plan Fluor 4x, 10x, 20x, 40x, 60x, CF Epi Plan APO 10					
Stage:	automated					
- travel range:	114 x 75 mm					
- accuracy (1 mm of translation) / XY repeatability:	0.06 µm / ± 1 µm					
Z-scanner:	piezo scanner					
- objective translation range:	80 µm					
- minimal translation step / repeatability:	50 nm / < 6 nm					
OPTICAL-MECHANICAL						
Optimized optics for the spectral range:	325 - 1100 nm					
Laser radiation delivery:	single, double, triple or pent	a input port				
Polarizers (excitation and detection channels):	Glan-Taylor prizm, 325 - 100					
Half-wave plate (λ / 2) positioner:	automated three- / five-pos					
Beam expander:	automated vario telescope,		tor 1 - 4			
Edge filter positioner:	automated three- / five-pos					
Interference filter positioner:	six-position					
OMU and microscope coupling:	three- or five- position swite	h				
IMAGING MONOCHROMATOR-SPEC						
Optical configuration:	vertical					
Focal length:	520 mm					
Imaging spatial resolution (aberration limited):	compensated, < 5 µm					
Ports:	1 input, 2 output					
Flat field:	28 x 10 mm					
Grating unit:	automated 4-position turret					
Grating choice:	150, 300, 600, 1200, 2400,					
Spectral resolution:	0.25 cm ⁻¹ Echelle grating, wavelength 500 nm)					
·	0.9 cm ⁻¹ (1800 I / mm grating)					
Confocal pinhole:	width 0 - 1.5 mm; step size 1 µm					
Wavelength accuracy with CCD camera:	0.005 nm (1800 l / mm grat	ing)				
SCANNING UN		ith V. V. mirrorg				
Scanning method: Max. Scanning speed:	galvanometer scanners of w 3 sec (1001 x 1001 pixels, m					
Scanning region:	150 μm x 150 μm (using 100					
CCD CAMERA FOR SPEC		objective terisj				
Type:	digital CCD camera HS101H					
Sensor:	back-thinned CCD array 204	8 x 122				
Pixel size:	12 x 12 μm	0 / 122				
Cooling:	Two-stage Peltier cooling with temperature stabilization to					
-	Invo-stage Feitier cooling wi	th temperature s	stabilization to			
Dynamic range:	- 45 °C	th temperature s	tabilization to			
	- 45 °C 1000	th temperature s	tabilization to			
CONFOCAL LASER MICRO	- 45 °C 1000 SCOPE UNIT	th temperature s	tabilization to			
Pre-pinhole objective positioner:	- 45 °C 1000	th temperature s	tabilization to			
	- 45 °C 1000 SCOPE UNIT	th temperature s	tabilization to			
Pre-pinhole objective positioner:	- 45 °C 1000 DSCOPE UNIT three-coordinated (X, Y, Z)		stabilization to			
Pre-pinhole objective positioner: Laser beam attenuator: Confocal pinhole: Detector:	- 45 °C 1000 DSCOPE UNIT three-coordinated (X, Y, Z) VND filter		stabilization to			
Pre-pinhole objective positioner: Laser beam attenuator: Confocal pinhole:	- 45 °C 1000 SCOPE UNIT three-coordinated (X, Y, Z) VND filter variable from 0 to 1.5 mm, s		tabilization to			
Pre-pinhole objective positioner: Laser beam attenuator: Confocal pinhole: Detector:	- 45 °C 1000 SCOPE UNIT three-coordinated (X, Y, Z) VND filter variable from 0 to 1.5 mm, s		stabilization to			
Pre-pinhole objective positioner: Laser beam attenuator: Confocal pinhole: Detector: LASERS	- 45 °C 1000 SCOPE UNIT three-coordinated (X, Y, Z) VND filter variable from 0 to 1.5 mm, s		stabilization to			
Pre-pinhole objective positioner: Laser beam attenuator: Confocal pinhole: Detector: LASERS The system configuration allows of using up to 5 lasers:	- 45 °C 1000 SCOPE UNIT three-coordinated (X, Y, Z) VND filter variable from 0 to 1.5 mm, s PMT	tep size 1 μm				
Pre-pinhole objective positioner: Laser beam attenuator: Confocal pinhole: Detector: LASERS The system configuration allows of using up to 5 lasers: Type: HeCd laser:	- 45 °C 1000 SCOPE UNIT three-coordinated (X, Y, Z) VND filter variable from 0 to 1.5 mm, s PMT Wavelength, nm 325	tep size 1 µm Power, mW 10, 15, 30, 4				
Pre-pinhole objective positioner: Laser beam attenuator: Confocal pinhole: Detector: LASERS The system configuration allows of using up to 5 lasers: Type: HeCd laser: HeCd laser:	- 45 °C 1000 SCOPE UNIT three-coordinated (X, Y, Z) VND filter variable from 0 to 1.5 mm, s PMT Wavelength, nm 325 441.6	tep size 1 μm Power, mW 10, 15, 30, 4 50	ł0, 50			
Pre-pinhole objective positioner: Laser beam attenuator: Confocal pinhole: Detector: LASERS The system configuration allows of using up to 5 lasers: Type: HeCd laser: HeCd laser: DPSS laser:	- 45 °C 1000 SCOPE UNIT three-coordinated (X, Y, Z) VND filter variable from 0 to 1.5 mm, s PMT Wavelength, nm 325 441.6 473	tep size 1 μm Power, mW 10, 15, 30, 4 50 22	ł0, 50 50			
Pre-pinhole objective positioner: Laser beam attenuator: Confocal pinhole: Detector: LASERS The system configuration allows of using up to 5 lasers: The system configuration allows of using up to 5 lasers: Type: HeCd laser: HeCd laser: DPSS laser: DPSS laser:	- 45 °C 1000 SCOPE UNIT three-coordinated (X, Y, Z) VND filter variable from 0 to 1.5 mm, s PMT Wavelength, nm 325 441.6 473 532	tep size 1 μm Power, mW 10, 15, 30, 4 50 22 22	ł0, 50			
Pre-pinhole objective positioner: Laser beam attenuator: Confocal pinhole: Detector: LASERS The system configuration allows of using up to 5 lasers: Type: HeCd laser: HeCd laser: DPSS laser:	- 45 °C 1000 SCOPE UNIT three-coordinated (X, Y, Z) VND filter variable from 0 to 1.5 mm, s PMT Wavelength, nm 325 441.6 473	tep size 1 μm Power, mW 10, 15, 30, 4 50 22	ł0, 50 50			

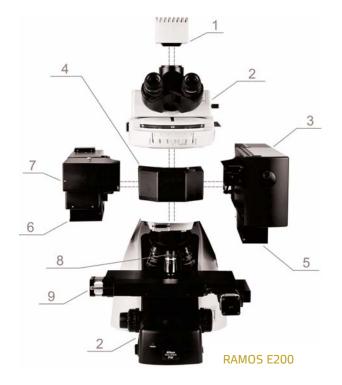
* Microscope, objective lenses and type of lasers can be offered on customer's request

RAMOS E/M series 3D scanning laser Raman microscopes provide rapid, high sensitivity analysis and unprecedented convenience in use.

RAMOS E/M Series Raman spectrometers are designed on the basis of research grade optical microscopes allowing realization of the following light microscopy methods:

- Raman measurements
- Transmitted light
- Reflected light (bright field and dark field illumination)
- Confocal microscopy
- Fluorescence measurements
- Polarization contrast and phase contrast imaging
- Differential interference contrast

The innovative approach to system design of Raman spectrometers ensures extremely high temperature and temporal stability of spectral measurements.

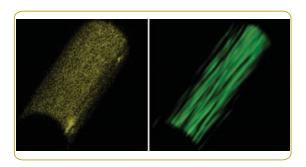

All components of RAMOS E200 system are fully integrated within an optical microscope providing compactness and mobility of the system.

In RAMOS M350, M520, M750 systems external imaging spectrographs are connected via optical fibers.

Raman measurements with the RAMOS E/M Series systems can be started in several minutes by turning a system key.

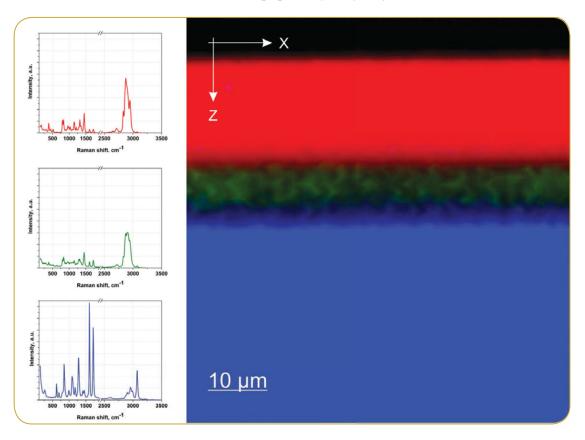
RAMOS E/M Series

- 3. Raman optical module
- Automated 3-position turret with mirrors for input / output radiation
- 5. Confocal laser microscope module ("Reflection" module)
- 6. Two-channel imaging spectrometer
- 7. XY galvano mirror scanner
- 8. Z piezo scanner
- 9. Automated microscope stage



Confocal Raman microscope with scanning speed of 1000 x 1000 pixels within total acquisition time of 3 sec

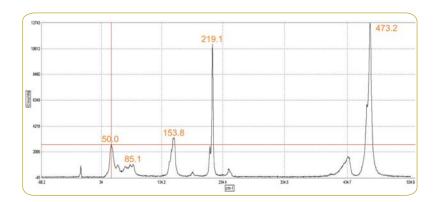
Fast raster and start-stop scanner operational modes


Spatial resolution of confocal images (100x, NA = 0.95)

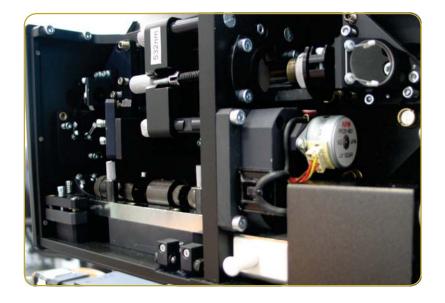
Laser wavelength, nm	XY - plane resolution, nm	Z (axial) resolution, nm
473	390	550
532	440	620
633	520	730
785	650	910

Simultaneous 2D / 3D laser confocal and Raman imaging with full spectra saving in each point

Confocal imaging of deep sample layers

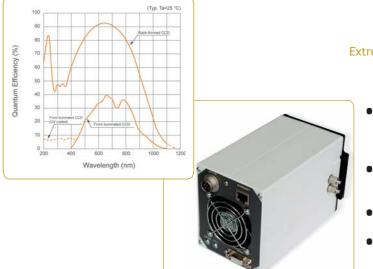

Ostec Instruments | + 7 (800) 700-65-55 | info@ostec-instruments.com | www.ostec-instruments.com

Confocal Raman Microscope RAMOS



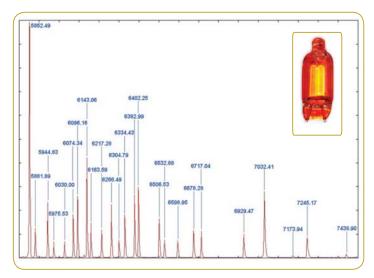
High-performance optics ensures super system sensitivity and high signal-to-noise ratio (S/N ratio)

: <u>V</u> iew <u>Process</u> <u>H</u> elp	· · · · ·					1				-				
GI_CCD(Ver.3)	~	13 Full binnin		1			교 64	Settings n	node:ON	100×				
oint Z Fast N	tapping Fast Mappin	ng Plus Spectra	Mapping	Mapping Plu	s Settings									
				9										
1)												1. SpcWndNorm	al	
64646						0								
53871						1			7070	1	1 1	1	1	<u>]</u>
	1								_ M	1				
										•				
43096				SiRam	an spectr	um			4719	1				
8				532 nm					Tana a	Vana	Si (4)	p	1	
32321				Laser p	ower on th	he san	ple: 6m	W	13		Augent Maler			
				Objectiv	ve lens: 1	00*, N/	4=0.95		2300		- The second sec	in his manufactor war	-	
				Exposu	re time: 1	00 sec			1100				And a state of the	
21546						*******			1100					*******
									0	1817	1853 2189	2525 2	2002 3198	
											09-1	4		
10771	***************		11	******										
			111 8			1 C C			- C			1		



Wide spectral range, ultimate accuracy of Raman shift measurements, high spectral resolution

Fast system configuration changing (lasers and filters switching) without additional system alignment


Extremely sensitive detectors for Raman signal registration

- Spectral CCD camera provides outstanding performance due to the increased number of pixels (the number of pixels is 2048) and the smaller pixel pitches (12 x 12 μm)
- Photodetector quantum efficiency is up to 95%. Low dark signal level due to two-stage thermoelectric sensor cooling
- Detectors operating internal memory with the capacity of up to 128 MB
- High speed Ethernet interface for data transfer

The system may be completed with the following options:

- Automated XY stage for ultra wide field of scanning
- High temperature and vacuum cells
- Cryostat
- Remote fiber probe

High-precision spectrometer calibration

RAMOS E/M Series spectrometers can be optionally equipped with a neon lamp for high-accuracy spectral calibration

Ostec Instruments | + 7 (800) 700-65-55 | info@ostec-instruments.com | www.ostec-instruments.com

Specification

	RAMOS E 200	RAMOS M 350	RAMOS M 520	RAMOS M 750			
Image acquisition mode:	3D (XYZ) confocal laser and Raman images						
Scanning type:	XY galvano-mirror scanners XY motorized stage (option) Z piezo scanner						
Scanning speed:	1000 x 1000 pixels per 3 sec (3 µs/pixel)						
Spatial resolution:	XY: 440 nm, Z: 620 nm (532 nm laser, 100×, NA = 0.95)						
Spectral range:	50 – 8500 cm ⁻¹ (532 nm laser) 50 – 9700 cm ⁻¹ (532 nm laser)						
Excitation source:	Build-in 473 nm or 532 nm laser, connection of additional external lasers 455 nm, 633 nm, 785 nm is possible						
Laser beam attenuator:	Automated unit with VND filter, continuously changeable from 0.1% to 100%						
Reyleigh rejection filters:	A pair of Edge filters with cut-off starting from 50 cm ⁻¹ (for 532 nm laser)						
Spectrometer configuration:	2-channel imaging spectrometer External imaging spectrograph directly coupled to a microscope						
Focal length:	200 mm	350 mm	520 mm	750 mm			
Spectral resolution (for 532 nm laser):	1 cm ⁻¹ /pixel (grating 2400 gr/mm) 2 cm ⁻¹ , FWHM (grating 2400 gr/mm)	1.60 cm ⁻¹ (grating 1800 groove/mm)	0.76 cm ⁻¹ (grating 1800 groove/mm) 0.25 cm ⁻¹ (Echelle grating)	0.44 cm ⁻¹ (grating 1800 groove/mm)			
Number of gratings:	2 gratings, 4 optionally	4 mounted on motorised turret, more gratings with manual chang					
Detection system:	CCD sensor 2048x122 pixels, with Peltier cooling	CCD sensor 2048x122 with two-stage cooling, quantum efficiency upto 95%					
Options:	Heating & cooling sta EMCCD sensor for ulti	ges, fiber optic probe, mate Raman mapping s	peed				

FLIM option is available. Combination with AFM is possible.

RAMOS M350

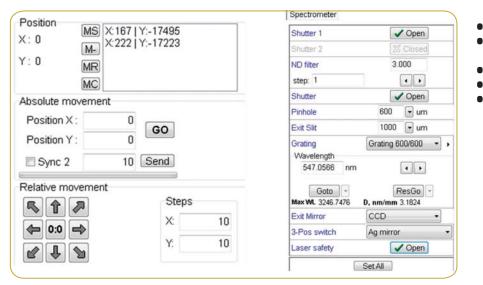
Compact confocal Raman microscope RAMOS M350 is intended for various spectral measurements with submicrometer scale image resolution. The device features a high throughput and a high spectral resolution.

RAMOS M520

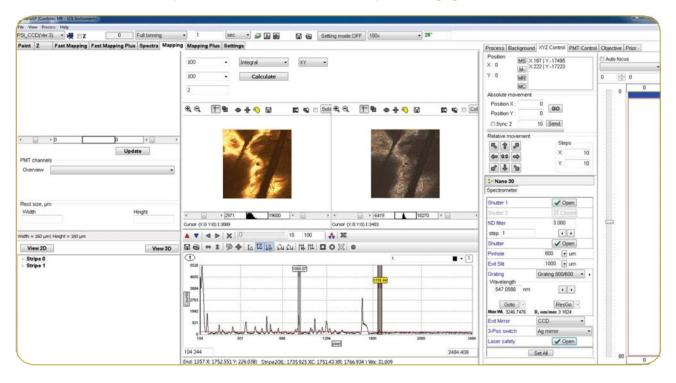
Confocal Raman microscope RAMOS M520 with high-end class capabilities is applicable for spectral measurements with submicrometer scale image resolution. The device possesses all features of M350, but ensures the enhanced spectral resolution.

RAMOS M750

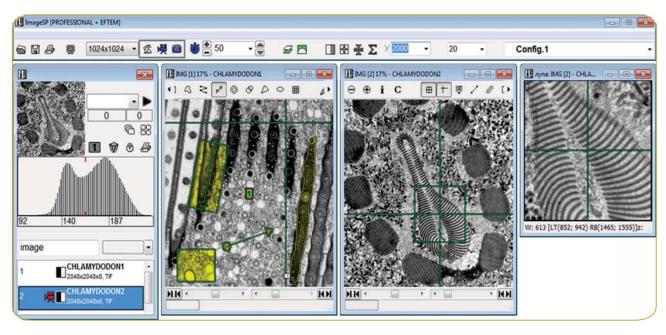
Confocal Raman microscope RAMOS M750 is perfect for spectral measurements with the extremely high spectral resolution.



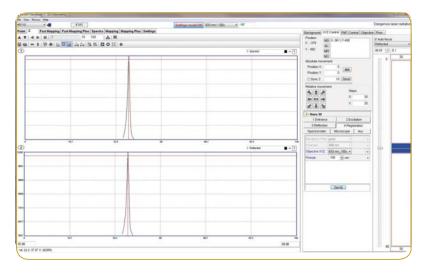
Up to two detectors can be used simultaneously in the above three system models .


The intuitive for anyone, powerful RAMOS NanoSPO software package has a user-friendly interface. RAMOS NanoSPO software delivers a unique environment for instrument control, data collection and data processing.

Control of all automated units and modules


- easy in use
- no need in a user's special training
- intuitive apprehensible interface
- convenient software HELP
- multiscreen operation

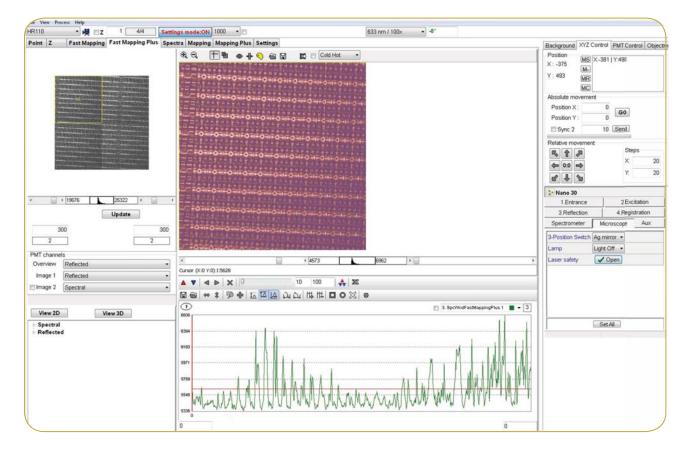
Raman and/or fluorescence spectra detection, confocal laser and spectral imaging



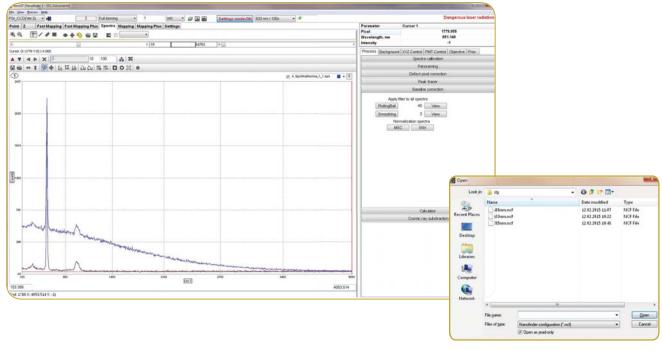
RAMOS E/M Series and statistical image processing

- distances and areas measurements
- minimum, maximum, sum, root mean square deviation, etc. determination
- cross sections

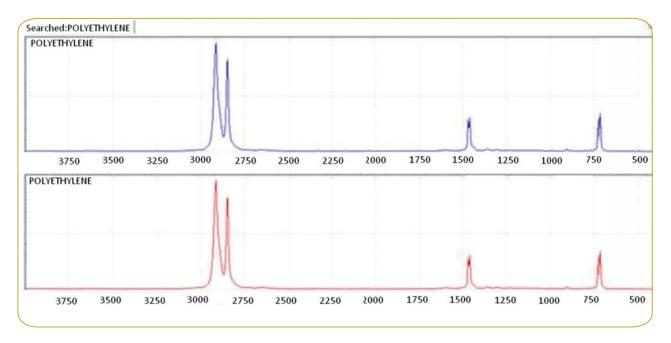
int Z Past Mapping Fast Mapping P	us Spectra Mapping Mapping Flux Setting	44			Process Background Mt2 Control PMT C	antral Clambe	e Proc
A T/## ++9 6	Spectra calization						
					Adorratic + are + 20		
					Names of cancel plust 1985 (\$		
					Poal web, pm 12 Loost cellination		Update
					El index 1082 [get]	VIE	S47.1
					2 point calibration Index 103 (Det)	W.	100.34128
	+ (1.000	0.000 + 52			anden 1040 (Det)	194	841 82285
www. (N. 346 Y 20) 2 45 4000				1.1			Calculate
6 + 1 9 + L I I I I I I					Echolic calibration C Street at Q.* KQ	63	
D			22 S 2 apr	 (8) 			
Heel					Defect paid corr	ean.	
					Peditan		
-					Easte cre	5.P.	_
					Calulator		
pert.					Crorec og salat	tean	
1							
100							
1							
		1					
	llamon	- ululur la					
an bencher and the state of the second	140.8	404.4 886.5		588.7	1		
4791 FIED				990.717			

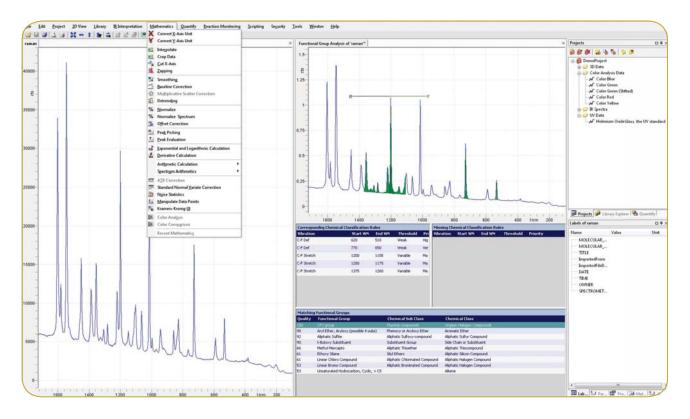


Automated spectral calibration with the built-in source


Automated focusing with the confocal laser microscope module ("Reflection" module)

Rapid panoramic mapping of a large sample area with the use of a galvano mirror scanner and an automated stage


Automated fluorescence background subtraction, mathematical operations with spectra, spectra stitching, peak fitting, cosmic ray removal, etc.


Functional processor, experiment automation and program configuring

Link to the Raman spectral database

Chemometric software program package as an option

Confocal Raman Microscope RAMOS

Official dealer in your country

Ostec Instruments

+ 7 (800) 700-65-55

info@ostec-instruments.com www.ostec-instruments.com