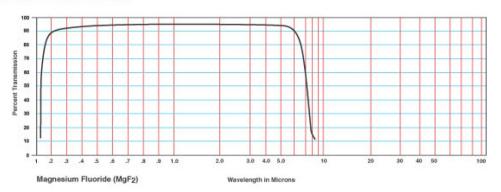
OPTICAL MATERIALS: INFRA-RED


Title: Optical material/ crystals (Infrared)

Material/Specification: Magnesium Fluoride for 0.12µm to 7µm transmission

Range/Description: OPMI-MAGNESIUM FLUORIDE

Magnesium fluoride is transparent over an extremely wide range of wavelengths. Windows, lenses and prisms made of this material can be used over the entire range of wavelengths from 0.120 μ m vacuum (UV) to 8.0 μ m (IR). Good structure synthetic VUV grade MgF2 is quite expensive, in the region of \$3000/ kg (2007) but the real cost of optics in this material is due to relatively low volume manufacture. Thin layers of MgF2 are frequently applied to the surfaces of optical elements as part of optical coatings such as

Internal Transmittance

Internal Transmittance $t_i(\lambda)$ vs. wavelength λ											
λ,мкм	0.2	0.5	1.0	3.0	5.0	6.0	7.0	8.0	-	-	
$\tau_i(\lambda)$	0.95	0.97	0.97	0.97	0.97	0.91	0.54	0.12		-	

Refra	Refractive Index n vs. Wavelength λ no=Ordinary ne=extraordinary															
λ, мкм	0.2	0.5	1.0	2.0	3.0	4.0	5.0	6.0	7.0	i	i		i	-	İ	i
no	1.42	1.37	13.7	1.36	1.36	1.35	1.34	1.32	1.30	İ	_	Ī	Ì	-	-	-
ne	1.43	1.39	13.8	1.37	1.37	1.36	1.34	1.33	1.31	1	_	-		_	_	_

Optical Properties					
Transmission Range	0.12 to 7μm				
Refractive Index	1.413 at 0.22µm				
Refractive Loss	5.7% at 0.22µm				
Crystal/Class Structure	Tetragonal				
Cleavage Plane	(100),(110), imperfect				

Thermal Properties						
Thermal Expansion	13.7 (para) 8.9 (perp) x 10 ⁻⁶ /K					
Thermal Conductivity	21 (para) 33.6 (perp) W m ⁻¹ K ⁻¹ at 300K					
Melting Point	1255°C					
Specific Heat Capacity	1003 J Kg m ⁻¹ K ⁻¹					

Mechanical Properties					
Density	3.18g/cc				
Hardness (Knoop)	415				
Youngs Modulus	138 GPa				
Shear Modulus	54.66GPa				
Bulk Modulus	101.32 GPa				
Poisson Ratio	0.276				
Elastic Limit	49.6 GPa (7200 psi)				
Molecular Weight	62.32				

Chemical Properties	
Solubility	0.0002g/100g water

+44 (0)1622 859444 info@knightoptical.co.uk www.knightoptical.com

