

OPTICAL MATERIALS: ULTRA-VIOLET

Title: Optical material/ crystals (Ultraviolet)

Material/Specification: UV grade fused silica, Corning 7980 2G for 170-2500nm transmission

Range/Description: OPMU-7980-2G

+44 (0)1622 859444 info@knightoptical.co.uk www.knightoptical.com

OPTICAL MATERIALS: ULTRA-VIOLET

This material is a high purity synthetic amorphous silicon dioxide manufactured by flame hydrolysis. The colorless, noncrystalline silica glass combines a very low thermal expansion coefficient with excellent optical qualities and exceptional transmittance in the ultraviolet. It is available in a number of grades for different applications.

Quality Grade Selection Chart

Inclusion Class			Homogeneity ^{3,4} ppm							
			Grade							
Class	Total Inclusion ¹ Cross Section [mm ²]	Maximum² Size [mm]	AA ≤ 0.5	A ≤ 1	B ≤1.5	C ≤ 2	D ≤ 3	E ≤ 4	F ≤ 5	G ⁵ NS
0	≤ 0.03	0.10								
1	≤ 0.10	0.28	Č.	-						
2	≤ 0.25	0.50								
3	≤ 0.50	0.76								
4	≤ 1.00	1.00	Or The Control of the							
5	≤ 2.00	1.27								

Notes:

- Defines the sum of the cross section in mm² of inclusions per 100 cm³ of glass. Inclusions with a diameter ≤ 0.10 mm are disregarded.
- 2. Refers to the diameter of the largest single inclusion.
- 3. Index homogeneity: the maximum index variation (relative), measured over the clear aperture of the blank.
- 4. Index homogeneity is certified using an interferometer at 632.8 nm. The numerical homogeneity is reported as the average through the piece thickness. Blanks with a diameter up to 450 mm can be analyzed over the full aperture. Larger parts can be analyzed using multiple overlapping apertures. The minimum thickness for index homogeneity verification is 20 mm. For thinner parts, the parent piece is certified.
- 5. NS (not specified)

OPTICAL MATERIALS: ULTRA-VIOLET

Mechanical and Thermal Properties:

Unless otherwise stated, all values @ 25°C

Elastic (Young's) Modulus	72.7 GPa	Softening Point	15	85 °C (10 ^{7,6} poises)
Shear Modulus	31.4 GPa	Annealing Point	10	942 °C (1013 poises)
Modulus of Rupture, abraded	52.4 MPa	Strain Point	89	93 °C (1014.5 poises)
Bulk Modulus	35.4 GPa	Thermal Conductivity		1.30 W/m K
Poisson's Ratio	0.16	Thermal Diffusivity		0.0075 cm ² /s
Density	2.201 g/cm ³	Average C.T.E.	0.52 ppm/K	5 °C-35 °C
Knoop Hardness (100 g load)	522 kg/mm ²	1	0.57 ppm/K	0 °C-200 °C
		7	0.48 ppm/K	-100 °C-200 °C

Chemical Durability and Impurities:

Solution		Time	Weight Loss [mg/cm ²]	Impurities
5% HCL by weight	@95 °C	24 h	< 0.010	OH content (by weight): 800-1000 ppm
5% NaOH	@95 °C	6 h	0.453	Impurities other than OH: ≤ 1000 ppb
0.02N NA ₂ CO ₃	@95 °C	6 h	0.065	
0.02N H ₂ SO ₄	@95 °C	24 h	< 0.010	
Deionized H ₂ O	@95 °C	24 h	0.015	
10% HF by weight	@25 °C	20 m	0.230	
10% NH₄F'HF by weight	@25 °C	20 m	0.220	

Refractive Index and Dispersion.

Wavelength	Refractive	Thermal	Polynomial Dispersion Equation Constants*1			
[air]	Index *2	Coefficient				
λ[nm]	n	$\Delta n/\Delta T^{*3}$ (ppm/K)	A ₀ 2.104025400	5		
			A ₁ -1.45600033	0 x 10 ⁻⁴		
1128.64	1.448870	9.6	A ₂ -9.04913539	0 x 10 ⁻³		
1064.00	1.449633	9.6	A ₃ 8.80183099	2 x 10 ⁻³		
1060.00	1.449681	9.6	A ₄ 8.43523722	8 x 10 ⁻⁵		
1013.98 n _t	1.450245	9.6	A ₅ 1.68165678	9 x 10 ⁻⁶		
852.11 n _s	1.452469	9.7	A ₆ -1.67542544	9 x 10 ⁻⁸		
706.52 n _r	1.455149	9.9	A ₇ 8.32660246	1 x 10 ⁻¹⁰		
656.27 n _c	1.456370	9.9				
643.85 n _c .	1.456707	10.0				
632.80 n _{He-Ne}	1.457021	10.0	Sellmeier Dispersion Equation Constants *2			
589.29 n _D	1.458406	10.1	-			
587.56 n _d	1.458467	10.1	B ₁ 0.68374049	400		
546.07 n _e	1.460082	10.2	B ₂ 0.42032361	300		
486.13 n _F	1.463132	10.4	B ₃ 0.58502748	000		
479.99 n _F	1.463509	10.4	C ₁ 0.00460352	869		
435.83 n _g	1.466701	10.6	C ₂ 0.01339688	560		
404.66 n _h	1.469628	10.8	C ₃ 64.49327320	000		
365.01 n _i	1.474555	11.2				
334.15	1.479785	11.6				
312.57	1.484514	12.0	Δn/ΔT Dispersion Eq	uation Constants *3		
308.00	1.485663	12.1				
248.30	1.508433	14.2	C ₀ 9.390590			
248.00	1.508601	14.2	C ₁ 0.235290			
214.44	1.533789	17.0	C ₂ -1.318560 x	10 ⁻³		
206.20	1.542741	18.1	C ₃ 3.028870 x	104		
194.17	1.559012	20.4				
193.40	1.560208	20.5				
193.00	1.560841	20.6	Other Optical Propert	ies		
184.89	1.575131	22.7		20002075		
			$V_{\rm d}$	67.79		
			V_{\circ}	67.64		
]	$n_{\mathtt{F}}$ - $n_{\mathtt{C}}$	0.006763		
			$n_{F'}$ - $n_{C'}$	0.006802		
			Stress Coefficient	35.0 nm/cm MPa		
			Striae	ISO 10110-4 Class		
				5/Thickness Direction		
			Birefringence	≤ 1nm/cm,		

lower specifications available