KABI LVDT CABLE ELECTRONICS integrated in sensor cable Configurable output signal (4...20 mA, 0...20 mA, 0...5 V, 0...10 V, ±5 V, ±10 V) - Low residual noise - Built-in cable break detection | EL ECERONICO | MAD CADI E EL ECEDONICO | |--------------------------|--| | ELECTRONICS | KAB CABLE ELECTRONICS | | output signal | 020 mA, 420 mA (load <300 Ohm) | | | $05 \text{ V, } \pm 5 \text{ V (load } > 5 \text{ kOhm)}$ | | | 010 V, ± 10 V (looad >10 kOhm) | | temperature coefficient | -0,0055, ± 0,002 %/K | | ripple | $<$ 0,5 mV $_{\rm eff}$ up to 300 Hz, $<$ 4 mV $_{\rm eff}$ up to 20 MHz | | max. frequency | 300 Hz/ -3 dB (6-pol. Bessel) | | isolation stability | > 1000 VDC | | power supply | 936 VDC | | current consumption | 65 mA at 24 VDC | | | 140 mA at 12 VDC | | sensor supply (standard) | 3 V _{eff} 3 kHz, (adjustable, 1-18 kHz) | | adjustable setting | frequency, amplitude, phase shift, offset, gain | | working temperature | -40+85 °C | | storage temperature | -40+85 °C | | housing | ABS | | mounting | hole ø 5,5 | #### **ELECTRICAL CONNECTION** ## **CABLE BREAK DETECTION** The electronics by eddylab feature a built-in cable break detection. This is achieved by an impedance measurement of the LVDT's secondary coil. If the sensor cable is cut, the impedance on the secondary connections of the electronics change regardless of the push rod position, triggering the cable break detection. This feature is based on a broken secondary connection. A partial cable break of the primary connections (cables between primary coil and electronics) will not activate this function. The electronics vary in their functional range. The external electronics IMCA offers the widest range. The cable electronics KAB only visualises a cable break by a red LED. ### ORDER CODE KAB - 24V - X - X type KAB cable electronics a output signal = 0...20 mA 020A 420A 4...20 mA = 10V 0...10 V 5V = 0...5 V ±5V -5...5 V ±10V -10...10 V **b** KAB: type of cable / cable length E1: for sensor with cable output = KAB integrated in sensor cable E2: for sensor with connector output A = cable 2 m, M12 straight female connector = cable 2 m, M12 angular female connector В С cable 5 m, M12 straight female connector = cable 5 m, M12 angular female connector Ε cable 10 m, M12 straight female connector cable 10 m, M12 angular female connector **b** KAB: type of cable / cable length E3: for sensor with cable output = KAB integrated in sensor cable, M12 connector E4: for sensor with connector output M12A = cable 2 m, M12 straight female conn., M12 conn. M12B = cable 2 m, M12 angular female conn., M12 conn. M12C = cable 5 m, M12 straight female conn., M12 conn. M12D = cable 5 m, M12 angular female conn., M12 conn. M12E = cable 10 m, M12 straight female conn., M12 conn. M12F = cable 10 m, M12 angular female conn., M12 conn. #### possible combinations - S3+E1: sensor with cable output, KAB integrated in sensor cable - S3+E3: sensor with cable output, KAB integrated in sensor cable, M12 connector - S1+E2: sensor with connector output, cable electronics with cable K4PxM - S1+E4: sensor with connector output, cable electronics with cable K4PxM, M12 connector Phone: +49 (0)8024 46772 - 0 +49 (0)8024 46772 - 100 E-mail: info@eddylab.de Internet: www.eddylab.de