

EP-M260

High Efficiency & Scale Production Metal Powder Bed Fusion

EP-M260

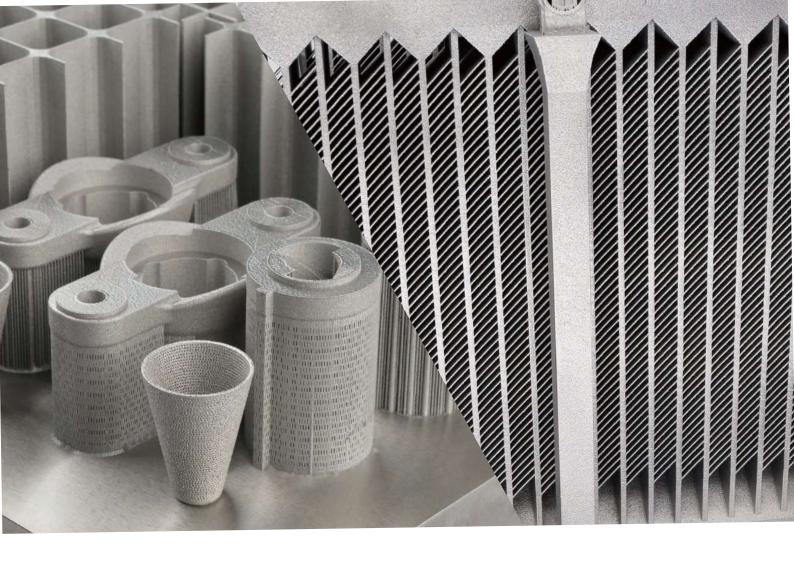
The EP-M260 is an industrial metal 3D printer that uses advanced metal powder bed fusion (MPBF) technology. It is capable of easily and quickly converting CAD data into high-performance, complex struc-ture metal parts. The 3D printer is an ideal choice for medium sized parts and small batch production.

CONSISTENT PERFORMANCE

- · Innovative gas flow management and optimized filter system ensure a stable building environment.
- · Outstanding sealing capability optimizes oxygen content.
- · Precise laser beam quality control.

HIGH PRODUCTIVITY

- · Dual-Laser system equipped with build volume of 266x266x390mm³.
- · Non-stop operation during filter change.
- Optimized recoating strategy shortens coating time .


- · Convenient powder recycling systems and glove box structure minimize powder contact.
- · Intelligent software ensures less human intervention.
- \cdot Real-time monitoring of the production environment and building process.
- · Double locking from mechanical lock to improve safety.
- · Alarming when the access door is open abnormally, to ensure the safety of use.

CONTINUE OF THE PROPERTY OF T

- · Quantitative powder feeding and coating ensure less powder waste.
- $\cdot \ \, \text{Advanced filtration system significant increases filter lifetime.}$
- · Low inert gas consumption during purging and operation.

EP-M260 PARAMETER

Machine Model	EP-M260
Build Chamber (XxYxZ)	266 x 266 x 390mm³
Optical System	Fiber Laser, 500 W/1000 W (single or dual-laser optional)
Spot Size	70~100 μm
Max Scan Speed	8 m/s
Building Speed (1)	Single laser: 15~35 cm³/h Dual laser: 25~55 cm³/h
Layer Thickness	20-120 μm
Material	Titanium Alloy, Aluminium Alloy, Nickel Alloy, Maraging Steel, Stainless Steel, Cobalt Chrome, Copper Alloy, etc.
Power Supply	380 V, 10 KW, 24 A, 50/60 Hz (Dual laser: 12 KW, 30 A)
Gas Supply	Ar/N_2
Oxygen Content	≤100 ppm
Dimension (WxDxH)	2800 x 1300 x 2410 mm ³
Weight	2300 kg
Software	EP Control, EPHatch
Input Data Format	STL or other Convertible File

⁽¹⁾ Building speed depends on the process parameter, material and laser etc.

Eplus 3D www.eplus3d.com info@eplus3d.com

^{*}EPLUS 3D reserves the right to explain any alteration of the specifications and pictures.